
Conjugate gradients
Introduction

WHO WILL WIN?

GD

CG
Originally, the conjugate gradients method was created to solve a system of linear equations.

Without special efforts the problem can be presented in the form of minimization of the quadratic
function, and then generalized on a case of non quadratic function. We will start with the
parabolic case and try to construct a conjugate gradients method for it. Let us consider the
classical problem of minimization of the quadratic function:

Here , .

Method of conjugate gradients for the quadratic
function

We will consider symmetric matrices (otherwise, replacing leads to the same
optimization problem). Then:

Then having an initial guess , vector is the direction of the fastest decrease. The
procedure of the steepest descent in this direction is provided by the procedure of line search:

af://n0
af://n3
af://n10

Assuming that the point of the zero derivative in this parabola is the minimum (for positive
matrices it is guaranteed, otherwise it is not a fact), and also, rewriting this problem for the
arbitrary () direction of the method, we have:

Then let's start our method, as the method of the steepest descent:

Note, however, that if the next step is built in the same way (the fastest descent), we will "lose"
some of the work that was done in the first step and we will get a classic situation for the fastest
descent:

In order to avoid this, we introduce the concept of - conjugated vectors: let's say that two
vectors , - are conjugated relative to each other if they are executed:

This concept becomes particularly interesting when matrix is positive defined, then vectors
will be orthogonal if the scalar product is defined by the matrix . Therefore, this property is also
called - orthogonality.

Then we will build the method in such a way that the next direction is - orthogonal with the
previous one:

where is selected in a way that :

It's interesting that all received directions are - orthogonal to each other. (proved by
induction)

Thus, we formulate an algorithm:

1. Let and , count .
2. By the procedure of line search we find the optimal length of step:

Calculate minimizing by the formula

3. We're doing an algorithm step:

4. update the direction: , where is calculated by the formula:

5. Repeat steps 2-4 until directions are built, where is the dimension of space (dimension of
).

Method of conjugate gradients for non-quadratic
function:

In case we do not have an analytic expression for a function or its gradient, we will most likely not
be able to solve the one-dimensional minimization problem analytically. Therefore, step 2 of the
algorithm is replaced by the usual line search procedure. But there is the following mathematical
trick for the fourth point:

For two iterations, it is fair:

where is some kind of constant. Then for the quadratic case, we have:

Expressing from this equation the work , we get rid of the

"knowledge" of the function in step definition , then point 4 will be rewritten as:

This method is called the Polack - Ribier method.

Examples

Example 1

Prove that if a set of vectors - - are conjugated (all vectors are conjugated in pairs of
), these vectors are linearly independent. .

Solution:

We'll show, that if , than all coefficients should be equal to zero:

Thus, , for all other indices one have perform the same process

af://n51
af://n60
af://n61
af://n68

References
An Introduction to the Conjugate Gradient Method Without the Agonizing Pain
The Concept of Conjugate Gradient Descent in Python by Ilya Kuzovkin
Picture of best\worst initial guess in SD

Code
Open in Colab

Newton method
Intuition

Newton's method to find the equation' roots

Consider the function . Let there be equation . Consider a linear
approximation of the function near the solution ():

We get an approximate equation:

We can assume that the solution to equation will be close to the optimal

.

We get an iterative scheme:

This reasoning can be applied to the unconditional minimization task of the function by
writing down the necessary extremum condition:

af://n68
https://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf
https://ikuz.eu/machine-learning-and-computer-science/the-concept-of-conjugate-gradient-descent-in-python/
http://fourier.eng.hmc.edu/e176/lectures/
af://n76
https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/CG.ipynb
af://n78
af://n80
af://n81

Here . Thus, we get the Newton optimization method in its classic
form:

With the only clarification that in the multidimensional case:
.

Second order Taylor approximation of the function

Let us now give us the function and a certain point . Let us consider the square
approximation of this function near :

The idea of the method is to find the point , that minimizes the function , i.e.
.

x

f(x)
𝑓 𝑥𝑘

f(x)

xk xk+1 xk+2

𝑓 𝑥𝑘+1

Let us immediately note the limitations related to the necessity of the Hessian's unbornness (for
the method to exist), as well as its positive definiteness (for the convergence guarantee).

Convergence
Let's try to get an estimate of how quickly the classical Newton method converges. We will try to
enter the necessary data and constants as needed in the conclusion (to illustrate the
methodology of obtaining such estimates).

af://n95
af://n102

Used here is: . Let's try to estimate the size of :

с

where .

So, we have:

Quadratic convergence already smells. All that remains is to estimate the value of Hessian's
reverse.

Because of Hessian's Lipschitz сontinuity and symmetry:

So, (here we should already limit the necessity of being for such estimations, i.e.
).

The convergence condition imposes additional conditions on

Thus, we have an important result: Newton's method for the function with Lipschitz positive
Hessian converges squarely near () to the solution with quadratic speed.

Theorem

Let be a strongly convex twice continuously differentiated function at , for the second
derivative of which inequalities are executed: . Then Newton's method with a
constant step locally converges to solving the problem with super linear speed. If, in addition,
Hessian is Lipschitz сontinious, then this method converges locally to with a quadratic speed.

af://n119
af://n121

Examples
Let's look at some interesting features of Newton's method. Let's first apply it to the function

Summary
It's nice:

quadratic convergence near the solution
affinity invariance
the parameters have little effect on the convergence rate

It's not nice:

it is necessary to store the hessian on each iteration: memory
it is necessary to solve linear systems: operations
the Hessian can be degenerate at
the hessian may not be positively determined direction may not be a
descending direction

Possible directions

Newton's damped method (adaptice stepsize)
Quasi-Newton methods (we don't calculate the Hessian, we build its estimate - BFGS)
Quadratic evaluation of the function by the first order oracle (superlinear convergence)
The combination of the Newton method and the gradient descent (interesting direction)
Higher order methods (most likely useless)

Code
Open in Colab

Quasi Newton methods
Intuition
For the classic task of unconditional optimization the general scheme of iteration

method is written as:

In the Newton method, the direction (Newton's direction) is set by the linear system solution at
each step:

i.e. at each iteration it is necessary to compensate hessian and gradient and resolve linear
system.

Note here that if we take a single matrix of as at each step, we will exactly get the
gradient descent method.

af://n121
af://n124
af://n143
af://n155
https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/Newton.ipynb
af://n157
af://n159

The general scheme of quasi-Newton methods is based on the selection of the matrix so that
it tends in some sense at to the true value of inverted Hessian in the local optimum

. Let's consider several schemes using iterative updating of matrix in the following
way:

Then if we use Taylor's approximation for the first order gradient, we get it:

Now let's formulate our method as:

in case you set the task of finding an update :

Broyden method
The simplest option is when the amendment has a rank equal to one. Then you can look for
an amendment in the form

where is a scalar and is a non-zero vector. Then mark the right side of the equation to find
 for :

We get it:

A possible solution is: , .

Then an iterative amendment to Hessian's evaluation at each iteration:

Davidon–Fletcher–Powell method

Broyden–Fletcher–Goldfarb–Shanno method

af://n174
af://n185
af://n188
af://n191

Comparison of quasi Newton methods
Link

Adaptive metric methods
It is known, that antigradient is the direction of the steepest descent of the function

 at point . However, we can introduce another concept for choosing the best direction of
function decreasing.

Given and a point . Define as the set of points with
distance to . Here we presume the existence of a distance function .

Than, we can define another steepest descent direction in terms of minimizer of function on a
sphere:

Let us assume that the distance is defined locally by some metric :

Let us also consider first order Taylor approximation of a function near the point :

Now we can explicitly pose a problem of finding , as it was stated above.

Using it can be written as:

Using Lagrange multipliers method, we can easily conclude, that the answer is:

Which means, that new direction of steepest descent is nothing else, but .

Indeed, if the space is isotropic and , we immediately have gradient descent formula, while
Newton method uses local Hessian as a metric matrix.

af://n191
https://nbviewer.jupyter.org/github/fabianp/pytron/blob/master/doc/benchmark_logistic.ipynb
af://n193

	Conjugate gradients
	Introduction
	Method of conjugate gradients for the quadratic function
	Method of conjugate gradients for non-quadratic function:
	Examples
	Example 1

	References
	Code

	Newton method
	Intuition
	Newton's method to find the equation' roots
	Second order Taylor approximation of the function

	Convergence
	Theorem

	Examples
	Summary
	Possible directions

	Code

	Quasi Newton methods
	Intuition
	Broyden method
	Davidon–Fletcher–Powell method
	Broyden–Fletcher–Goldfarb–Shanno method
	Comparison of quasi Newton methods

	Adaptive metric methods

