
Conjugate gradients  
Introduction  

WHO WILL WIN?

GD

CG
Originally, the conjugate gradients method was created to solve a system of linear equations.

Without special efforts the problem can be presented in the form of minimization of the quadratic
function, and then generalized on a case of non quadratic function. We will start with the
parabolic case and try to construct a conjugate gradients method for it. Let us consider the
classical problem of minimization of the quadratic function:

Here , .

Method of conjugate gradients for the quadratic
function

 

We will consider symmetric matrices  (otherwise, replacing  leads to the same
optimization problem). Then:

Then having an initial guess , vector  is the direction of the fastest decrease. The
procedure of the steepest descent in this direction is provided by the procedure of line search:
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Assuming that the point of the zero derivative in this parabola is the minimum (for positive
matrices it is guaranteed, otherwise it is not a fact), and also, rewriting this problem for the
arbitrary ( ) direction of the method, we have:

Then let's start our method, as the method of the steepest descent:

Note, however, that if the next step is built in the same way (the fastest descent), we will "lose"
some of the work that was done in the first step and we will get a classic situation for the fastest
descent:

In order to avoid this, we introduce the concept of  - conjugated vectors: let's say that two
vectors ,   - are conjugated relative to each other if they are executed:

This concept becomes particularly interesting when matrix  is positive defined, then  vectors
will be orthogonal if the scalar product is defined by the matrix . Therefore, this property is also
called  - orthogonality.



Then we will build the method in such a way that the next direction is  - orthogonal with the
previous one:

where  is selected in a way that :

It's interesting that all received  directions are - orthogonal to each other. (proved by
induction)

Thus, we formulate an algorithm:

1. Let  and , count .
2. By the procedure of line search we find the optimal length of step:

Calculate  minimizing  by the formula

3. We're doing an algorithm step:



4. update the direction: , where  is calculated by the formula:

5. Repeat steps 2-4 until  directions are built, where  is the dimension of space (dimension of
).

Method of conjugate gradients for non-quadratic
function:

 

In case we do not have an analytic expression for a function or its gradient, we will most likely not
be able to solve the one-dimensional minimization problem analytically. Therefore, step 2 of the
algorithm is replaced by the usual line search procedure. But there is the following mathematical
trick for the fourth point:

For two iterations, it is fair:

where  is some kind of constant. Then for the quadratic case, we have:

Expressing from this equation the work , we get rid of the

"knowledge" of the function in step definition , then point 4 will be rewritten as:

This method is called the Polack - Ribier method.

Examples  

Example 1  

Prove that if a set of vectors  -  - are conjugated (all vectors are conjugated in pairs of 
), these vectors are linearly independent. .

Solution:

We'll show, that if , than all coefficients should be equal to zero:

Thus, , for all other indices one have perform the same process
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References  
An Introduction to the Conjugate Gradient Method Without the Agonizing Pain
The Concept of Conjugate Gradient Descent in Python by Ilya Kuzovkin
Picture of best\worst initial guess in SD

Code  
Open in Colab

Newton method  
Intuition  

Newton's method to find the equation' roots  

Consider the function . Let there be equation . Consider a linear
approximation of the function  near the solution ( ):

We get an approximate equation:

We can assume that the solution to equation  will be close to the optimal 

.

We get an iterative scheme:

This reasoning can be applied to the unconditional minimization task of the  function by
writing down the necessary extremum condition:

af://n68
https://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf
https://ikuz.eu/machine-learning-and-computer-science/the-concept-of-conjugate-gradient-descent-in-python/
http://fourier.eng.hmc.edu/e176/lectures/
af://n76
https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/CG.ipynb
af://n78
af://n80
af://n81


Here . Thus, we get the Newton optimization method in its classic
form:

With the only clarification that in the multidimensional case: 
.

Second order Taylor approximation of the function  

Let us now give us the function  and a certain point . Let us consider the square
approximation of this function near :

The idea of the method is to find the point , that minimizes the function , i.e. 
.

x

f(x)
𝑓 𝑥𝑘

f(x)

xk xk+1 xk+2

𝑓 𝑥𝑘+1

Let us immediately note the limitations related to the necessity of the Hessian's unbornness (for
the method to exist), as well as its positive definiteness (for the convergence guarantee).

Convergence  
Let's try to get an estimate of how quickly the classical Newton method converges. We will try to
enter the necessary data and constants as needed in the conclusion (to illustrate the
methodology of obtaining such estimates).
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Used here is: . Let's try to estimate the size of :

с

where .

So, we have:

Quadratic convergence already smells. All that remains is to estimate the value of Hessian's
reverse.

Because of Hessian's Lipschitz сontinuity and symmetry:

So, (here we should already limit the necessity of being  for such estimations, i.e. 
).

The convergence condition  imposes additional conditions on 

Thus, we have an important result: Newton's method for the function with Lipschitz positive
Hessian converges squarely near ( ) to the solution with quadratic speed.

Theorem  

Let  be a strongly convex twice continuously differentiated function at , for the second
derivative of which inequalities are executed: . Then Newton's method with a
constant step locally converges to solving the problem with super linear speed. If, in addition,
Hessian is Lipschitz сontinious, then this method converges locally to  with a quadratic speed.
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Examples  
Let's look at some interesting features of Newton's method. Let's first apply it to the function

Summary  
It's nice:

quadratic convergence near the solution 
affinity invariance
the parameters have little effect on the convergence rate

It's not nice:

it is necessary to store the hessian on each iteration:  memory
it is necessary to solve linear systems:  operations
the Hessian can be degenerate at 
the hessian may not be positively determined  direction  may not be a
descending direction

Possible directions  

Newton's damped method (adaptice stepsize)
Quasi-Newton methods (we don't calculate the Hessian, we build its estimate - BFGS)
Quadratic evaluation of the function by the first order oracle (superlinear convergence)
The combination of the Newton method and the gradient descent (interesting direction)
Higher order methods (most likely useless)

Code  
Open in Colab

Quasi Newton methods  
Intuition  
For the classic task of unconditional optimization  the general scheme of iteration

method is written as:

In the Newton method, the  direction (Newton's direction) is set by the linear system solution at
each step:

i.e. at each iteration it is necessary to compensate hessian and gradient and resolve linear
system.

Note here that if we take a single matrix of  as  at each step, we will exactly get the
gradient descent method.
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The general scheme of quasi-Newton methods is based on the selection of the  matrix so that
it tends in some sense at  to the true value of inverted Hessian in the local optimum 

. Let's consider several schemes using iterative updating of  matrix in the following
way:

Then if we use Taylor's approximation for the first order gradient, we get it:

Now let's formulate our method as:

in case you set the task of finding an update :

Broyden method  
The simplest option is when the amendment  has a rank equal to one. Then you can look for
an amendment in the form

where  is a scalar and  is a non-zero vector. Then mark the right side of the equation to find 
 for :

We get it:

A possible solution is: , .

Then an iterative amendment to Hessian's evaluation at each iteration:

Davidon–Fletcher–Powell method  

Broyden–Fletcher–Goldfarb–Shanno method  
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Comparison of quasi Newton methods  
Link

Adaptive metric methods  
It is known, that antigradient  is the direction of the steepest descent of the function 

 at point . However, we can introduce another concept for choosing the best direction of
function decreasing.

Given  and a point . Define  as the set of points with
distance  to . Here we presume the existence of a distance function .

Than, we can define another steepest descent direction in terms of minimizer of function on a
sphere:

Let us assume that the distance is defined locally by some metric :

Let us also consider first order Taylor approximation of a function  near the point :

Now we can explicitly pose a problem of finding , as it was stated above.

Using  it can be written as:

Using Lagrange multipliers method, we can easily conclude, that the answer is:

Which means, that new direction of steepest descent is nothing else, but .

Indeed, if the space is isotropic and , we immediately have gradient descent formula, while
Newton method uses local Hessian as a metric matrix.
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