
Linear least squares  
Problem  

In a least-squares, or linear regression, problem, we have measurements  and 
and seek a vector  such that  is close to . Closeness is defined as the sum of the
squared differences:

also known as the -norm squared, 

For example, we might have a dataset of  users, each represented by  features. Each row  of
 is the features for user , while the corresponding entry  of  is the measurement we want to

predict from , such as ad spending. The prediction is given by .

We find the optimal  by solving the optimization problem

Let  denote the optimal . The quantity  is known as the residual. If , we
have a perfect fit.
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Note, that the function needn't be linear in the argument  but only in the parameters  that are
to be determined in the best fit. 

Approaches  

Moore–Penrose inverse  

If the matrix  is relatively small, we can write down and calculate exact solution:

where  is called pseudo-inverse matrix. However, this approach squares the condition number
of the problem, which could be an obstacle in case of ill-conditioned huge scale problem.

QR decomposition  

For any matrix  there is exists QR decomposition:

where  is an orthogonal matrix (its columns are orthogonal unit vectors meaning
 and  is an upper triangular matrix. It is important to notice, that since 

, we have:

Now, process of finding theta consists of two steps:

1. Find the QR decomposition of .
2. Solve triangular system , which is triangular and, therefore, easy to solve.
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Cholesky decomposition  

For any positive definite matrix  there is exists Cholesky decomposition:

where  is an lower triangular matrix. We have:

Now, process of finding theta consists of two steps:

1. Find the Cholesky decomposition of .
2. Find the  by solving triangular system 
3. Find the  by solving triangular system 

Note, that in this case the error stil proportional to the squared condition number.

Code  
Open in Colab

References  
CVXPY documentation
Interactive example
Jupyter notebook by A. Katrutsa

Minimum volume ellipsoid  
Problem  
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Let  be the points in . Given these points we need to find an ellipsoid, that contains
all points with the minimum volume (in 2d case volume of an ellipsoin is just the square).

An invertible linear transformation applied to a unit sphere produces an ellipsoid with the square,
that is  times bigger, than the unit sphere square, that's why we parametrize the interior
of ellipsoid in the following way:

Sadly, the determinant is the function, which is relatively hard to minimize explicitly. However, the
function  is actually convex, which provides a great opportunity to work
with it. As soon as we need to cover all the points with ellipsoid of minimum volume, we pose an
optimization problem on the convex function with convex restrictions:
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Principal component analysis  
Intuition  
Imagine, that you have a dataset of points. Your goal is to choose orthogonal axes, that describe
your data the most informative way. To be precise, we choose first axis in such a way, that
maximize the variance (expressiveness) of the projected data. All the following axes have to be
orthogonal to the previously chosen ones, while satisfy largest possible variance of the
projections.

Let's take a look at the simple 2d data. We have a set of blue points on the plane. We can easily
see that the projections on the first axis (red dots) have maximum variance at the final position of
the animation. The second (and the last) axis should be orthogonal to the previous one. 

source

This idea could be used in a variety ways. For example, it might happen, that projection of
complex data on the principal plane (only 2 components) bring you enough intuition for
clustering. The picture below plots projection of the labeled dataset onto the first to principal
components (PC's), we can clearly see, that only two vectors (these PC's) would be enogh to differ
Finnish people from Italian in particular dataset (celiac disease (Dubois et al. 2010)) 
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source

Problem  
The first component should be defined in order to maximize variance. Suppose, we've already
normalized the data, i.e. , then sample variance will become the sum of all squared

projections of data points to our vector , which implies the following optimization problem:

or

since we are looking for the unit vector, we can reformulate the problem:

It is known, that for positive semidefinite matrix  such vector is nothing else, but eigenvector
of , which corresponds to the largest eigenvalue. The following components will give you the
same results (eigenvectors).

So, we can conclude, that the following mapping:

describes the projection of data onto the  principal components, where  contains first (by the
size of eigenvalues)  eigenvectors of .

Now we'll briefly derive how SVD decomposition could lead us to the PCA.

Firstly, we write down SVD decomposition of our matrix:

https://privefl.github.io/bigsnpr/articles/how-to-PCA.html
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and to its transpose:

Then, consider matrix :

Which corresponds to the eigendecomposition of matrix , where  stands for the matrix of
eigenvectors of , while  contains eigenvalues of .

At the end:

The latter formula provide us with easy way to compute PCA via SVD with any number of principal
components:

Examples  

🌼 Iris dataset  
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Consider the classical Iris dataset 

source We have the dataset matrix 

https://sebastianraschka.com/Articles/2015_pca_in_3_steps.html
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Blog post
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Rendezvous problem  
Problem  
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We have two bodies in discrete time: the first is described by its coordinate  and its speed ,
the second has coordinate  and speed . Each body has its own dynamics, which we denote as
linear systems with matrices :

We want these bodies to meet in future at some point  in such a way, that preserve minimum
energy through the path. We will consider only kinetic energy, which is proportional to the
squared speed at each point of time, that's why optimization problem takes the following form:

Problem of this type arise in space engeneering - just imagine, that the first body is the spaceship,
while the second, say, Mars.
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Travelling salesman problem  
Problem  
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Suppose, we have  points in  Euclidian space (for simplicity we'll consider and plot case with 
). Let's imagine, that these points are nothing else but houses in some 2d village. Salesman

should find the shortest way to go through the all houses only once.

That is, very simple formulation, however, implies  - hard problem with the factorial growth of
possible combinations. The goal is to minimize the following cumulative distance:

where  is the -th point from  and  stands for the - dimensional vector of indicies, which
describes the order of path. Actually, the problem could be formulated as an LP problem, which is
easier to solve.

🧬Genetic (evolution) algorithm  
Our approach is based on the famous global optimization algorithm, known as evolution
algorithm.

Population and individuals  

Firstly we need to generate the set of random solutions as an initialization. We will call a set of
solutions  as population, while each solution is called individual (or creature).

Each creature contains integer numbers , which indicates the order of bypassing all the
houses. The creature, that reflects the shortest path length among the others will be used as an
output of an algorithm at the current iteration (generation).

Crossing procedure  

Each iteration of the algorithm starts with the crossing (breed) procedure. Formally speaking, we
should formulate the mapping, that takes two creature vectors as an input and returns its
offspring, which inherits parents properties, while remaining consistent. We will use ordered
crossover as such procedure.

https://en.wikipedia.org/wiki/Travelling_salesman_problem#Integer_linear_programming_formulations
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Mutation  

In order to give our algorithm some ability to escape local minima we provide it with mutation
procedure. We simply swap some houses in an individual vector. To be more accurate, we define
mutation rate (say, ). On the one hand, the higher the rate, the less stable the population is,
on the other, the smaller the rate, the more often algorithm gets stuck in the local minima. We
choose  individuals and in each case swap random  digits.

Selection  
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At the end of the iteration we have increased populatuion (due to crossing results), than we just
calculate total path distance to each individual and select top  of them. 

In general, for any , where  is the number of dimensions in the Euclidean space, there is a
polynomial-time algorithm that finds a tour of length at most  times the optimal for

geometric instances of TSP in
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Total variation in-painting  
Problem  

Grayscale image  

A grayscale image is represented as an  matrix of intensities  (typically between the
values  and ). We are given all the values of corrupted picture, but some of them should be
preserved as is through the recovering procedure: , where 

 is the set of indices corresponding to known pixel values. Our job is
to in-paint the image by guessing the missing pixel values, i.e., those with indices not in . The
reconstructed image will be represented by , where  matches the known pixels, i.e. 

 for .

The reconstruction  is found by minimizing the total variation of , subject to matching the
known pixel values. We will use the  total variation, defined as

So, the final optimization problem will be written as follows:

The crucial thing about this problem is defining set of known pixels . There are some heuristics:
for example, we could state, that each pixel with color similar (or exactly equal) to the color of text
is unknown. The results for such approach are presented below:
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Color image  

For the color case we consider in-painting problem in a slightly different setting: destroying some
random part of all pixels. In this case the image itself is 3d tensor (we convert all others color
schemes to the RGB). As it was in the grayscale case, we construct the mask  of known pixels for
all color channels uniformly, based on the principle of similarity of particular 3d pixel to the vector

 (black pixel). The results are quite promising - note, that we have no information about the
original picture, but assumption, that corrupted pixels are black. For the color picture we just sum
all tv's on the each channel:

Then, we need to write down optimization problem to be solved:

Results are presented below (these computations are really take time):
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It is not that easy, right? 

 

Only 5% of all pixels are left:

 

What about 1% of all pixels?
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Deep learning  
Problem  
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A lot of practical task nowadays are being solved by the deep learning approach, which is usually
implies finding local minimum of a non - convex function, that generalizes well (enough 😉). The
goal of this short text is to provide you an importance of the optimization behind neural network
training.

Cross entropy  

One of the most commonly used loss functions in classification tasks is the normalized categorical
cross entropy in  class problem:

Since in Deep Learning tasks the number of points in a dataset could be really huge, we usually
use {%include link.html title='Stochastic gradient descent based approaches as a workhorse.

In such algorithms one uses the estimation of a gradient at each step instead of the full gradient
vector, for example, in cross entropy we have:

The simplest approximation is statistically judged unbiased estimation of a gradient:

where we initially sample randomly only  points and calculate sample average. It can be
also considered as a noisy version of the full gradient approach.
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An overview of gradient descent optimization algorithms

Methods  
General formulation  

Some necessary or\and sufficient conditions are known (See Optimality conditions. KKT and
Convex optimization problem' %})

In fact, there might be very challenging to recognize the convenient form of optimization
problem.
Analytical solution of KKT could be inviable

Iterative methods  

Typically, the methods generate an infinite sequence of approximate solutions

which for a finite number of steps (or better - time) converges to an optimal (at least one of the
optimal) solution .

x0

x1
x2

x3
x4

Oracle conception  

def GeneralScheme(x, epsilon):

    while not StopCriterion(x, epsilon):

        OracleResponse = RequestOracle(x)

        x = NextPoint(x, OracleResponse)

    return x

http://ruder.io/optimizing-gradient-descent/
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f(xk), f ’(xk), f ’’(xk)

ORACLE

Black - box

xk

Complexity  

Challenges  

Unsolvability  

In general, optimization problems are unsolvable. ¯\(ツ)/¯

Consider the following simple optimization problem of a function over unit cube:

We assume, that the objective function  is Lipschitz continuous on :

with some constant  (Lipschitz constant). Here  - the - dimensional unit cube 
.

Our goal is to find such  for some positive . Here  is the global minimizer of
the problem. Uniform grid with  points on each dimension guarantees at least this quality

which means, that

Our goal is to find the  for some . So, we need to sample  points, since we need to
measure function in  points. Doesn't look scary, but if we'll take ,
computations on the modern personal computers will take 31,250,000 years.
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Stopping rules  

Argument closeness:

Function value closeness:

Closeness to a critical point

But  and  are unknown!

Sometimes, we can use the trick:

Note: it's better to use relative changing of these values, i.e. .

Local nature of the methods  

Problem classifications  

Methods classifications  

Speed of convergence  
Sublinear

where  and 

Linear

where  and 

Superlinear

where  or , 
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Quadratic

where  and 

Root test  

Пусть  — последовательность неотрицательных чисел, сходящаяся к нулю, и пусть

Если , то  имеет линейную сходимость с константной .
В частности, если , то  имеет сверхлинейную сходимость.
Если , то  имеет сублинейную сходимость.
Случай  невозможен.

Ratio test  

Пусть  — последовательность строго положительных чисел, сходящаяся к нулю. Пусть

Если существует  и при этом , то  имеет линейную сходимость с
константой 
В частности, если , то  имеет сверхлинейную сходимость

Если  не существует, но при этом , то  имеет линейную

сходимость с константой, не превосходящей .

Если , то  имеет сублинейную сходимость.

Ситуация  невозможна.

Во всех остальных случаях (т. е. когда ) нельзя

утверждать что-либо конкретное о скорости сходимости 
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Colab notebook with basic examples

 

https://colab.research.google.com/github/MerkulovDaniil/sber21_fmin/blob/sources/notebooks/Basic_tools_for_optimization.ipynb
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