
Linear least squares
Problem

In a least-squares, or linear regression, problem, we have measurements and
and seek a vector such that is close to . Closeness is defined as the sum of the
squared differences:

also known as the -norm squared,

For example, we might have a dataset of users, each represented by features. Each row of
 is the features for user , while the corresponding entry of is the measurement we want to

predict from , such as ad spending. The prediction is given by .

We find the optimal by solving the optimization problem

Let denote the optimal . The quantity is known as the residual. If , we
have a perfect fit.

af://n0
af://n3

Note, that the function needn't be linear in the argument but only in the parameters that are
to be determined in the best fit.

Approaches

Moore–Penrose inverse

If the matrix is relatively small, we can write down and calculate exact solution:

where is called pseudo-inverse matrix. However, this approach squares the condition number
of the problem, which could be an obstacle in case of ill-conditioned huge scale problem.

QR decomposition

For any matrix there is exists QR decomposition:

where is an orthogonal matrix (its columns are orthogonal unit vectors meaning
 and is an upper triangular matrix. It is important to notice, that since

, we have:

Now, process of finding theta consists of two steps:

1. Find the QR decomposition of .
2. Solve triangular system , which is triangular and, therefore, easy to solve.

af://n12
af://n13
https://en.wikipedia.org/wiki/Moore%E2%80%93Penrose_inverse
af://n17

Cholesky decomposition

For any positive definite matrix there is exists Cholesky decomposition:

where is an lower triangular matrix. We have:

Now, process of finding theta consists of two steps:

1. Find the Cholesky decomposition of .
2. Find the by solving triangular system
3. Find the by solving triangular system

Note, that in this case the error stil proportional to the squared condition number.

Code
Open in Colab

References
CVXPY documentation
Interactive example
Jupyter notebook by A. Katrutsa

Minimum volume ellipsoid
Problem

af://n28
af://n44
https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/Least_squares.ipynb
af://n46
https://www.cvxpy.org/examples/basic/least_squares.html
http://setosa.io/ev/ordinary-least-squares-regression/
https://nbviewer.jupyter.org/github/amkatrutsa/MIPT-Opt/blob/master/16-LSQ/Seminar16en.ipynb
af://n53
af://n56

Let be the points in . Given these points we need to find an ellipsoid, that contains
all points with the minimum volume (in 2d case volume of an ellipsoin is just the square).

An invertible linear transformation applied to a unit sphere produces an ellipsoid with the square,
that is times bigger, than the unit sphere square, that's why we parametrize the interior
of ellipsoid in the following way:

Sadly, the determinant is the function, which is relatively hard to minimize explicitly. However, the
function is actually convex, which provides a great opportunity to work
with it. As soon as we need to cover all the points with ellipsoid of minimum volume, we pose an
optimization problem on the convex function with convex restrictions:

Code
Open in Colab

References
Jupyter notebook by A. Katrutsa
https://cvxopt.org/examples/book/ellipsoids.html

af://n65
https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/Ellipsoid.ipynb
af://n67
https://colab.research.google.com/github/amkatrutsa/MIPT-Opt/blob/master/01-Intro/demos.ipynb#scrollTo=W264L1t1p3mF
http://cvxopt%20documentation/
af://n72

Principal component analysis
Intuition
Imagine, that you have a dataset of points. Your goal is to choose orthogonal axes, that describe
your data the most informative way. To be precise, we choose first axis in such a way, that
maximize the variance (expressiveness) of the projected data. All the following axes have to be
orthogonal to the previously chosen ones, while satisfy largest possible variance of the
projections.

Let's take a look at the simple 2d data. We have a set of blue points on the plane. We can easily
see that the projections on the first axis (red dots) have maximum variance at the final position of
the animation. The second (and the last) axis should be orthogonal to the previous one.

source

This idea could be used in a variety ways. For example, it might happen, that projection of
complex data on the principal plane (only 2 components) bring you enough intuition for
clustering. The picture below plots projection of the labeled dataset onto the first to principal
components (PC's), we can clearly see, that only two vectors (these PC's) would be enogh to differ
Finnish people from Italian in particular dataset (celiac disease (Dubois et al. 2010))

af://n72
af://n75
https://stats.stackexchange.com/questions/2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues

source

Problem
The first component should be defined in order to maximize variance. Suppose, we've already
normalized the data, i.e. , then sample variance will become the sum of all squared

projections of data points to our vector , which implies the following optimization problem:

or

since we are looking for the unit vector, we can reformulate the problem:

It is known, that for positive semidefinite matrix such vector is nothing else, but eigenvector
of , which corresponds to the largest eigenvalue. The following components will give you the
same results (eigenvectors).

So, we can conclude, that the following mapping:

describes the projection of data onto the principal components, where contains first (by the
size of eigenvalues) eigenvectors of .

Now we'll briefly derive how SVD decomposition could lead us to the PCA.

Firstly, we write down SVD decomposition of our matrix:

https://privefl.github.io/bigsnpr/articles/how-to-PCA.html
af://n79
https://en.wikipedia.org/wiki/Rayleigh_quotient

and to its transpose:

Then, consider matrix :

Which corresponds to the eigendecomposition of matrix , where stands for the matrix of
eigenvectors of , while contains eigenvalues of .

At the end:

The latter formula provide us with easy way to compute PCA via SVD with any number of principal
components:

Examples

🌼 Iris dataset

af://n102
af://n103

Consider the classical Iris dataset

source We have the dataset matrix

https://sebastianraschka.com/Articles/2015_pca_in_3_steps.html

Code
Open in Colab

Related materials
Wikipedia
Blog post
Blog post

Rendezvous problem
Problem

af://n106
https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/PCA.ipynb
af://n108
https://en.wikipedia.org/wiki/Principal_component_analysis
https://ethen8181.github.io/machine-learning/dim_reduct/svd.html
https://sebastianraschka.com/Articles/2015_pca_in_3_steps.html
af://n116
af://n118

We have two bodies in discrete time: the first is described by its coordinate and its speed ,
the second has coordinate and speed . Each body has its own dynamics, which we denote as
linear systems with matrices :

We want these bodies to meet in future at some point in such a way, that preserve minimum
energy through the path. We will consider only kinetic energy, which is proportional to the
squared speed at each point of time, that's why optimization problem takes the following form:

Problem of this type arise in space engeneering - just imagine, that the first body is the spaceship,
while the second, say, Mars.

Code
Open in Colab

References
Jupyter notebook by A. Katrutsa

Travelling salesman problem
Problem

af://n118
af://n125
https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/Rendezvous.ipynb
af://n127
https://colab.research.google.com/github/amkatrutsa/MIPT-Opt/blob/master/01-Intro/demos.ipynb#scrollTo=W264L1t1p3mF
af://n130
af://n133

Suppose, we have points in Euclidian space (for simplicity we'll consider and plot case with
). Let's imagine, that these points are nothing else but houses in some 2d village. Salesman

should find the shortest way to go through the all houses only once.

That is, very simple formulation, however, implies - hard problem with the factorial growth of
possible combinations. The goal is to minimize the following cumulative distance:

where is the -th point from and stands for the - dimensional vector of indicies, which
describes the order of path. Actually, the problem could be formulated as an LP problem, which is
easier to solve.

🧬Genetic (evolution) algorithm
Our approach is based on the famous global optimization algorithm, known as evolution
algorithm.

Population and individuals

Firstly we need to generate the set of random solutions as an initialization. We will call a set of
solutions as population, while each solution is called individual (or creature).

Each creature contains integer numbers , which indicates the order of bypassing all the
houses. The creature, that reflects the shortest path length among the others will be used as an
output of an algorithm at the current iteration (generation).

Crossing procedure

Each iteration of the algorithm starts with the crossing (breed) procedure. Formally speaking, we
should formulate the mapping, that takes two creature vectors as an input and returns its
offspring, which inherits parents properties, while remaining consistent. We will use ordered
crossover as such procedure.

https://en.wikipedia.org/wiki/Travelling_salesman_problem#Integer_linear_programming_formulations
af://n139
af://n141
af://n144
http://www.rubicite.com/Tutorials/GeneticAlgorithms/CrossoverOperators/Order1CrossoverOperator.aspx

8 4 7 3 6 2 5 1 9 0

0 1 2 3 4 5 6 7 8 9

0 4 7 3 6 2 5 1 8 9

Parent 1

Parent 2

Child
Mutation

In order to give our algorithm some ability to escape local minima we provide it with mutation
procedure. We simply swap some houses in an individual vector. To be more accurate, we define
mutation rate (say,). On the one hand, the higher the rate, the less stable the population is,
on the other, the smaller the rate, the more often algorithm gets stuck in the local minima. We
choose individuals and in each case swap random digits.

Selection

af://n147
af://n149

At the end of the iteration we have increased populatuion (due to crossing results), than we just
calculate total path distance to each individual and select top of them.

In general, for any , where is the number of dimensions in the Euclidean space, there is a
polynomial-time algorithm that finds a tour of length at most times the optimal for

geometric instances of TSP in

Code
Open in Colab

References
General information about genetic algorithms
Wiki

af://n153
https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/Travelling%20salesman%20problem.ipynb
af://n155
http://www.rubicite.com/Tutorials/GeneticAlgorithms.aspx
https://en.wikipedia.org/wiki/Travelling_salesman_problem
af://n160

Total variation in-painting
Problem

Grayscale image

A grayscale image is represented as an matrix of intensities (typically between the
values and). We are given all the values of corrupted picture, but some of them should be
preserved as is through the recovering procedure: , where

 is the set of indices corresponding to known pixel values. Our job is
to in-paint the image by guessing the missing pixel values, i.e., those with indices not in . The
reconstructed image will be represented by , where matches the known pixels, i.e.

 for .

The reconstruction is found by minimizing the total variation of , subject to matching the
known pixel values. We will use the total variation, defined as

So, the final optimization problem will be written as follows:

The crucial thing about this problem is defining set of known pixels . There are some heuristics:
for example, we could state, that each pixel with color similar (or exactly equal) to the color of text
is unknown. The results for such approach are presented below:

af://n160
af://n163
af://n165

Color image

For the color case we consider in-painting problem in a slightly different setting: destroying some
random part of all pixels. In this case the image itself is 3d tensor (we convert all others color
schemes to the RGB). As it was in the grayscale case, we construct the mask of known pixels for
all color channels uniformly, based on the principle of similarity of particular 3d pixel to the vector

 (black pixel). The results are quite promising - note, that we have no information about the
original picture, but assumption, that corrupted pixels are black. For the color picture we just sum
all tv's on the each channel:

Then, we need to write down optimization problem to be solved:

Results are presented below (these computations are really take time):

af://n173

It is not that easy, right?

Only 5% of all pixels are left:

What about 1% of all pixels?

Code
Open in Colab

References
CVXPY documentation
Interactive demo

Deep learning
Problem

af://n184
https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/Total%20variation%20inpainting.ipynb
af://n186
https://www.cvxpy.org/examples/applications/tv_inpainting.html
https://remi.flamary.com/demos/proxtv.html
af://n192
af://n194

A lot of practical task nowadays are being solved by the deep learning approach, which is usually
implies finding local minimum of a non - convex function, that generalizes well (enough 😉). The
goal of this short text is to provide you an importance of the optimization behind neural network
training.

Cross entropy

One of the most commonly used loss functions in classification tasks is the normalized categorical
cross entropy in class problem:

Since in Deep Learning tasks the number of points in a dataset could be really huge, we usually
use {%include link.html title='Stochastic gradient descent based approaches as a workhorse.

In such algorithms one uses the estimation of a gradient at each step instead of the full gradient
vector, for example, in cross entropy we have:

The simplest approximation is statistically judged unbiased estimation of a gradient:

where we initially sample randomly only points and calculate sample average. It can be
also considered as a noisy version of the full gradient approach.

Code
Open in Colab

References
Optimization for Deep Learning Highlights in 2017

af://n197
af://n208
https://colab.research.google.com/github/MerkulovDaniil/optim/blob/master/assets/Notebooks/Deep%20learning.ipynb
af://n210
http://ruder.io/deep-learning-optimization-2017/

An overview of gradient descent optimization algorithms

Methods
General formulation

Some necessary or\and sufficient conditions are known (See Optimality conditions. KKT and
Convex optimization problem' %})

In fact, there might be very challenging to recognize the convenient form of optimization
problem.
Analytical solution of KKT could be inviable

Iterative methods

Typically, the methods generate an infinite sequence of approximate solutions

which for a finite number of steps (or better - time) converges to an optimal (at least one of the
optimal) solution .

x0

x1
x2

x3
x4

Oracle conception

def GeneralScheme(x, epsilon):

 while not StopCriterion(x, epsilon):

 OracleResponse = RequestOracle(x)

 x = NextPoint(x, OracleResponse)

 return x

http://ruder.io/optimizing-gradient-descent/
af://n215
af://n218
af://n226
af://n232

f(xk), f ’(xk), f ’’(xk)

ORACLE

Black - box

xk

Complexity

Challenges

Unsolvability

In general, optimization problems are unsolvable. ¯\(ツ)/¯

Consider the following simple optimization problem of a function over unit cube:

We assume, that the objective function is Lipschitz continuous on :

with some constant (Lipschitz constant). Here - the - dimensional unit cube
.

Our goal is to find such for some positive . Here is the global minimizer of
the problem. Uniform grid with points on each dimension guarantees at least this quality

which means, that

Our goal is to find the for some . So, we need to sample points, since we need to
measure function in points. Doesn't look scary, but if we'll take ,
computations on the modern personal computers will take 31,250,000 years.

af://n234
af://n235
af://n236

Stopping rules

Argument closeness:

Function value closeness:

Closeness to a critical point

But and are unknown!

Sometimes, we can use the trick:

Note: it's better to use relative changing of these values, i.e. .

Local nature of the methods

Problem classifications

Methods classifications

Speed of convergence
Sublinear

where and

Linear

where and

Superlinear

where or ,

af://n248
af://n266
af://n268
af://n269
af://n270

Quadratic

where and

Root test

Пусть — последовательность неотрицательных чисел, сходящаяся к нулю, и пусть

Если , то имеет линейную сходимость с константной .
В частности, если , то имеет сверхлинейную сходимость.
Если , то имеет сублинейную сходимость.
Случай невозможен.

Ratio test

Пусть — последовательность строго положительных чисел, сходящаяся к нулю. Пусть

Если существует и при этом , то имеет линейную сходимость с
константой
В частности, если , то имеет сверхлинейную сходимость

Если не существует, но при этом , то имеет линейную

сходимость с константой, не превосходящей .

Если , то имеет сублинейную сходимость.

Ситуация невозможна.

Во всех остальных случаях (т. е. когда) нельзя

утверждать что-либо конкретное о скорости сходимости

References
CMC seminars (ru)
CVXPY documentation

af://n289
af://n301
af://n317
http://www.machinelearning.ru/wiki/images/9/9a/MOMO18_Extra1.pdf
https://www.cvxpy.org/index.html

Colab notebook with basic examples

https://colab.research.google.com/github/MerkulovDaniil/sber21_fmin/blob/sources/notebooks/Basic_tools_for_optimization.ipynb

	Linear least squares
	Problem
	Approaches
	Moore–Penrose inverse
	QR decomposition
	Cholesky decomposition

	Code
	References

	Minimum volume ellipsoid
	Problem
	Code
	References

	Principal component analysis
	Intuition
	Problem
	Examples
	🌼 Iris dataset

	Code
	Related materials

	Rendezvous problem
	Problem
	Code
	References

	Travelling salesman problem
	Problem
	🧬Genetic (evolution) algorithm
	Population and individuals
	Crossing procedure
	Mutation
	Selection

	Code
	References

	Total variation in-painting
	Problem
	Grayscale image
	Color image

	Code
	References

	Deep learning
	Problem
	Cross entropy

	Code
	References

	Methods
	General formulation
	Iterative methods
	Oracle conception
	Complexity

	Challenges
	Unsolvability
	Stopping rules
	Local nature of the methods

	Problem classifications
	Methods classifications
	Speed of convergence
	Root test
	Ratio test

	References

